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Abstract. It is shown that the melting temperature approach is quite successful in representing
the pressure dependence of the self-diffusion coefficient in solids at different temperatures.
Moreover, the approach is also capable of giving the activation volume and compressibility as
functions of both the pressure and the temperature. The calculations are performed in the cases
of Na, Pb, Cd and Zn.

Recently, it has been shown [1] that the vacancy model of Zener [2] is quite successful
in explaining the pressure dependence of self-diffusion in solids. However, the present
paper discusses the melting temperature approach in computing the pressure dependence of
self-diffuison and activation volume in solids at different temperatures.

In most of the solids, the melting temperature,Tm, is found to increase with increasing
pressure [3, 4]. On the other hand, the self-diffusion coefficient,D(P, T ), is found to
decrease with rising pressure, indicating that Gibbs’ activation energy,gact (P , T ), must
increase with increasing pressure. Therefore, there is a possibility that the quantitiesgact

andTm are related. We suggest a relation between them as

gact (P , T ) = A(T )RTm − E(T ) (1)

whereTm is the melting temperature at pressureP, T is the ambient temperature at which
D(P, T ) data are available as a function of pressure.A(T ) and E(T ) are pressure-
independent but temperature-dependent parameters andR is the universal gas constant.

Equation (1) can be used to define the diffusion coefficient as

D(P, T ) = D0 exp[−gact (P , T )/RT ] (2)

whereD0 is the frequency or pre-exponential factor and is given as

D0 = νfga2. (3)

In equation (3),g is a geometrical factorf is correlation factor,a is a lattice parameter and
ν is the jump frequency.

Actually, D0 is a pressure-dependent parameter and can be evaluated [1, 5, 6], but the
effect of pressure onD0 is quite small and hence can be neglected. Therefore, in the present
paper,D0 is taken as a pressure-independent parameter without introducing much error in
the results.

Substituting equation (1) into (2), we obtain

lnD(P, T )− lnD0 = −[A(T )Tm/T ] + [E(T )/RT ]. (4)
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Differentiation of equation (4) with respect toTm/T keepingT constant gives

[∂ lnD(P, T )/∂(Tm/T )]T = −A(T ). (5)

Therefore, the physical significance ofA(T ) is that it represents the slope of the straight
line obtained by plotting lnD(P, T ) versusTm/T for a solid at a given temperatureT .

Further, at pressureP = 0 and temperatureT , equation (2) can also be written as

lnD(0, T )− lnD0 = −[A(T )T0/T ] + [E(T )/RT ]. (6)

Equations (4) and (6) can be combined to give

D(P, T ) = D(0, T )exp[−A(T )(Tm − T0/T ]. (7)

The melting temperature as a function of pressure can be obtained from Simon’s relation
[7, 8] given as

Tm = T0[1+ βP ]C (8)

where Tm and T0 are the melting temperatures at pressureP and P = 0, respectively.
Kumari and Dass [4] had identified the Simon constantsβ andC as

β = B ′T (0, T0)/BT (0, T0) C = 2[γ (0, T0)− 1
3]/B ′T (0, T0).

Here, BT (0, T0) and B ′T (0, T0) are the isothermal bulk modulus and its first pressure
derivative, respectively, at zero pressure and temperatureT0. γ (0, T0) is the Gr̈uneisen
parameter. The values ofβ andC for Na are taken from the article by Dass [9] whereas
those for Cd, Zn and Pb are taken from the article by Babb [8]. The values of these
parameters are reported in table 1.

Table 1. Values of melting constantsA(T ) andV act (0, T ), in different solids as functions of
temperature.V act in the case of Cd and Zn is along theC-axis

Melting constant V act (cm3 mol−1) αact Kact
T References

Solids T0 (K) β (Kbar−1) C T (K) A(T ) Present Theory α KT for V act

288.00 14.71 11.43 11.1± 0.2Na 370.950 0.1086 0.236 7.0 5.1 [14]
364.45 15.92 12.36 13.0± 0.2

592.15 16.67 7.62 7.49± 0.15
574.15 17.11 7.83 7.65± 0.10Cd 594.1 0.022 0.417 6.08 5.65 [12]
549.15 15.90 7.27 7.14± 0.14
524.15 15.46 7.26 6.90± 0.13

574.2 22.36 14.36 13.0± 0.8Pb 600.2 0.031 0.416 — 8.1 [11]
526.0 26.61 17.09 15.4± 1.7

673.95 10.67 4.27 4.28± 0.08
Zn 692.7 0.017 0.417 623.85 9.99 3.99 3.97± 0.05 9.0 6.2 [13]

574.05 9.78 3.91 3.72± 0.03

Differentiation of equation (1) with respect to pressure gives the activation volume,
V act (P , T ), as

[∂gact (P , T )/∂P ]T = V act (P , T ) = A(T )RdTm
dP

. (9)

Equation (9) can alternatively be written as

V act (P , T ) = A(T )RT0Cβ(1+ βP )C−1 (10)

with the help of equation (8).
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Moreover, the differentiation ofV act (P , T ) with respect to pressure at constant
temperature gives the activation isothermal compressibility,Kact (P , T ), as

Kact (P , T ) = − [V act (P , T )]−1[∂V act (P , T )/∂P ]T
= (1− C)β(1+ βP )−1. (11)

According to the present theory,V act involves the diffusion parameterA(T ) and,
therefore, it varies with pressure as well as with temperature, but, on the other hand,Kact

does not involveA(T ) and, therefore, it is independent of temperature and needs further
verification.

The present theory is applied in the case of Na [10], Pb [11], Cd [12] and Zn [13].
The reference number with each solid represents the source ofD(P, T ) data as a function
of pressure at different temperatures. Once the data ofD(P, T ) andTm become available
for a solid, the plot is drawn of lnD(P, T ) againstTm/T at various temperatures, giving a
straight line at each temperature. The straight line between lnD(P, T ) andTm/T is evident
in figures 1 and 2 in the cases of Na, Pb, Cd and Zn. Hence, the slop of the straight line
representsA(T ). The values ofA(T ) so obtained are reported in table 1 for each solid at
various temperatures, giving a straight line at each temperatures.

Figure 1. lnD(P, T ) againstTm/T in the case of Na at 364.45 K and Pb at 574.2 K. The solid
circles are the experimental points and the solid line is the best-fit curve.

Now, the values ofD(P, T ) are computed as a function of pressure with the help of
equation (7) as the value ofA(T ) is known from table 1. The results so obtained are
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Figure 2. lnD(P, T ) againstTm/T in the case of Cd at 592.15 K and Zn at 623.85 K along
the c-axis. The solid circles are the experimental points and the solid line is the best-fit line.

reported for Na in table 2. In table 3, the results are compared for Pb, Cd and Zn at one
temperature. The agreement between the calculated and the experimental data ofD(P, T )

in each solid is very good keeping in mind the uncertainties involved in the measurement
of diffusion data.

The values of activation volume atP = 0 but at various temperatures are calculated
with equation (10). The calculated values ofV act (0, T ) are compared in table 1 with the
available data in the literature. Here again, the agreement is very good. Moreover, the
values ofV act (P , T ) as a function of pressure in the case of Na are also reported in table 2;
these are in good agreement with the earlier results [1].

Further, the ratio ofKact
T (0, T )/KT (0, T ) andαact/α(0, T ) computed from the present

theory is reported in table 1. HereKT (0, T ) and α(0, T ) represent the isothermal
compressibility and the coefficient of thermal expansion, respectively, at pressureP = 0 and
temperatureT , for bulk solids whereasαact = [V act ]−1[∂V act/∂T ]P . These calculations
are performed just to give an idea of the magnitude. Thus, it is clear from table 1 that
the activation compressibility and activation thermal expansion are always greater than the
corresponding properties of the bulk solid.

In conclusion, it may be said that the present theory of the melting temperature approach
is quite successful in representing the self-diffusion coefficient,D(P, T ), and the activation
volume,V act (P , T ), as functions of pressure at different temperatures.
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Table 2. Self-diffusion and thermodynamic properties of sodium as functions of pressure and
temperature.

T = 288 K T = 364.45 K

D × 1010 D × 108

(cm2 s−1) (cm2 s−1)
P Tm V act Kact × 102 P Tm V act Kact × 102

(kbar) (K) Expt Calc (cm3 mol−1) (kbar−1) (kbar) (K) Expt Calc (cm3 mol−1) (kbar−1)

0 370.95 32.3 32.3 11.43 8.14 0 370.95 13.4 13.4 12.36 8.14
1.6060 385.07 15.7 15.7 10.13 6.95 1.266 382.22 8.04 8.19 11.23 7.18
2.894 395.29 9.21 9.31 9.30 6.22 2.416 390.60 5.26 5.68 10.38 6.47
4.991 410.30 4.41 4.33 8.25 5.31 2.452 391.88 5.24 5.37 10.35 6.45
6.760 421.71 2.39 2.42 7.55 4.73 3.759 401.70 3.31 3.49 9.56 5.81
6.809 422.02 2.29 2.38 7.53 4.72 5.647 414.65 2.04 1.99 8.63 5.08
7.908 428.61 1.57 1.69 7.16 4.42 5.658 414.72 1.81 1.98 8.62 5.07
9.281 436.43 1.01 1.14 6.76 4.09 7.560 426.56 1.15 1.18 7.87 4.51

8.729 433.39 0.862 0.876 7.48 4.22

Table 3. The variation ofD(P, T ) as a function of pressure (kbar) in Pb, Cd and Zn at one
temperature (K).

Zn Cd Pb

T = 623.85 T = 549.15 T = 526.0

D (×10−9 cm2 s−1) D (×10−8 cm2 s−1) D (×10−11 cm2 s−1)
P P P

(kbar) Calc Expt (kbar) Calc Expt (kbar) Calc Expt

0.00 2.548 2.548 0.00 3.82 3.82 0.00 2.41 2.41
0.133 2.520 2.550 0.14 3.74 — 0.987 1.63 1.30
1.380 2.293 2.286 1.71 2.918 3.002 1.974 1.106 0.981
1.860 2.211 2.200 4.19 1.906 2.103 3.949 0.523 0.540
3.380 1.973 1.968 6.22 1.472 1.464
4.920 1.756 1.750 8.18 1.106 1.117
6.400 1.579 1.580
8.710 1.338 1.345
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