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Abstract. It is shown that the melting temperature approach is quite successful in representing
the pressure dependence of the self-diffusion coefficient in solids at different temperatures.
Moreover, the approach is also capable of giving the activation volume and compressibility as
functions of both the pressure and the temperature. The calculations are performed in the cases
of Na, Pb, Cd and Zn.

Recently, it has been shown [1] that the vacancy model of Zener [2] is quite successful

in explaining the pressure dependence of self-diffusion in solids. However, the present
paper discusses the melting temperature approach in computing the pressure dependence of
self-diffuison and activation volume in solids at different temperatures.

In most of the solids, the melting temperatufg, is found to increase with increasing
pressure [3,4]. On the other hand, the self-diffusion coefficiéntP, T'), is found to
decrease with rising pressure, indicating that Gibbs’ activation engf§y,P, T), must
increase with increasing pressure. Therefore, there is a possibility that the quayitities
andT,, are related. We suggest a relation between them as

g“!(P,T) = A(T)RT,, — E(T) )

whereT,, is the melting temperature at pressuteT is the ambient temperature at which

D(P,T) data are available as a function of pressurd(7T) and E(T) are pressure-

independent but temperature-dependent parameter® andhe universal gas constant.
Equation (1) can be used to define the diffusion coefficient as

D(P,T) = Doexpl-g“" (P, T)/RT] (2)
where Dy is the frequency or pre-exponential factor and is given as
Do = vfga®. 3)

In equation (3)¢ is a geometrical factof is correlation factorg is a lattice parameter and
v is the jump frequency.

Actually, Dg is a pressure-dependent parameter and can be evaluated [1, 5, 6], but the
effect of pressure ol is quite small and hence can be neglected. Therefore, in the present
paper,Dg is taken as a pressure-independent parameter without introducing much error in
the results.

Substituting equation (1) into (2), we obtain

InD(P,T) —InDg = —[A(T)T,,/T] + [E(T)/RT]. 4)
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Differentiation of equation (4) with respect #,/T keepingT constant gives
[0IND(P, T)/d(T,/ T)]r = —A(T). (5)

Therefore, the physical significance &{T) is that it represents the slope of the straight
line obtained by plotting ID (P, T) versusT,,/T for a solid at a given temperatufe
Further, at pressur® = 0 and temperaturé&, equation (2) can also be written as

InD(0, T) — InDg = —[A(T)To/T] + [E(T)/RT]. (6)
Equations (4) and (6) can be combined to give
D(P,T) = D(O, T)exp[-A(T)(T,, — To/ T]. (7)

The melting temperature as a function of pressure can be obtained from Simon'’s relation
[7,8] given as

T, = Toll + BP]° (®)
where T,, and Ty are the melting temperatures at presséreand P = 0, respectively.
Kumari and Dass [4] had identified the Simon constghtnd C as

B = B}(0, To)/ Br (0, To) C = 2[y(0, To) — 31/B7(0, To).

Here, Br(0, Tp) and B;(0, Tp) are the isothermal bulk modulus and its first pressure
derivative, respectively, at zero pressure and temperafrey (0, Tp) is the Giineisen
parameter. The values ¢f and C for Na are taken from the article by Dass [9] whereas
those for Cd, Zn and Pb are taken from the article by Babb [8]. The values of these
parameters are reported in table 1.

Table 1. Values of melting constantd (7)) and V¢ (0, T), in different solids as functions of
temperature.V““ in the case of Cd and Zn is along tideaxis

Melting constant veet (cm® mol~t) et K4

2 7 7T References
Solids Tp (K) B (Kbarl)y ¢ T (K) A(T) Present Theory o Kr  for vad
Na  370.950 0.1086 0236288.00 1471 1143  1£02 ;4 59 [14

364.45 15.92 12.36 13+ 0.2

592.15 16.67 7.62 49+ 0.15
574.15 17.11 7.83 .B85+0.10
549.15 15.90 7.27 .14+ 0.14
524.15 15.46 7.26 .80+0.13

Pb 6002  0.031 04165742 2236 1436 16+08 81 [

526.0 26.61 17.09 18+17

673.95 10.67 4.27 .28+ 0.08
Zn 692.7 0.017 0.417 62385 9.99 399 9B+005 90 6.2 [13]
574.05 9.78 3.91 32+0.03

Cd 594.1 0.022 0.417 6.08 5.65 [12]

Differentiation of equation (1) with respect to pressure gives the activation volume,
vaeer(p,T), as
act act dTm
[0g“"(P,T)/3P]y = V*(P,T) = A(T)RF. 9
Equation (9) can alternatively be written as
V”“’(P, T)=A(T)RToCB(1+ ,BP)C_1 (20)

with the help of equation (8).



Self-diffusion and activation volume in solids 2027

Moreover, the differentiation ofv“<(P,T) with respect to pressure at constant
temperature gives the activation isothermal compressibikitif! (P, T), as

Ke«(P,T) = —[V* (P, T)] YoV (P, T)/dPls
=1-0)BA+BP)L (11)

According to the present theory/“ involves the diffusion parametedA(7T) and,
therefore, it varies with pressure as well as with temperature, but, on the otherk&hd,
does not involveA(T) and, therefore, it is independent of temperature and needs further
verification.

The present theory is applied in the case of Na [10], Pb [11], Cd [12] and Zn [13].
The reference number with each solid represents the sourtg BfT') data as a function
of pressure at different temperatures. Once the data(df, T) and T,, become available
for a solid, the plot is drawn of IB(P, T) againstTm/T at various temperatures, giving a
straight line at each temperature. The straight line betweén(Ip, 7) and7,,/ T is evident
in figures 1 and 2 in the cases of Na, Pb, Cd and Zn. Hence, the slop of the straight line
representsA (7). The values ofA(T) so obtained are reported in table 1 for each solid at
various temperatures, giving a straight line at each temperatures.

Tm/T
1.23 119 1.16 1.12 1.09 1.05 1.02
21.00 I 1 ’ 1 I 18.90
@
n  21.70- - 18.20
N\
£
O L 17.50
= 22.404 =3
- o
a - 16.80
—  23.10- RY
o L 1610
C N
— —
23,60 e
- 15.40 3
~
50 o
23. - 14.70 O
5.20 Y Y r ' T 14.00
1.06 1.07 1.08 1.10 1.12 1.14 1.15

Tm/T

Figure 1. InD(P, T) againstT,, /T in the case of Na at 364.45 K and Pb at 574.2 K. The solid
circles are the experimental points and the solid line is the best-fit curve.

Now, the values ofD(P, T) are computed as a function of pressure with the help of
equation (7) as the value of(T) is known from table 1. The results so obtained are
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Figure 2. InD(P, T) againstT,,/T in the case of Cd at 592.15 K and Zn at 623.85 K along
the c-axis. The solid circles are the experimental points and the solid line is the best-fit line.

reported for Na in table 2. In table 3, the results are compared for Pb, Cd and Zn at one
temperature. The agreement between the calculated and the experimental bafa, o)

in each solid is very good keeping in mind the uncertainties involved in the measurement
of diffusion data.

The values of activation volume @ = 0 but at various temperatures are calculated
with equation (10). The calculated values ¥f (0, T) are compared in table 1 with the
available data in the literature. Here again, the agreement is very good. Moreover, the
values ofV¢“! (P, T) as a function of pressure in the case of Na are also reported in table 2;
these are in good agreement with the earlier results [1].

Further, the ratio o&K$ (0, T)/K+(0, T) anda/a(0, T) computed from the present
theory is reported in table 1. Her&;(0,7T) and «(0, T) represent the isothermal
compressibility and the coefficient of thermal expansion, respectively, at predsdr@ and
temperaturel’, for bulk solids whereag®’ = [V*'|"1 [V /3T]p,. These calculations
are performed just to give an idea of the magnitude. Thus, it is clear from table 1 that
the activation compressibility and activation thermal expansion are always greater than the
corresponding properties of the bulk solid.

In conclusion, it may be said that the present theory of the melting temperature approach
is quite successful in representing the self-diffusion coefficibxit?, 7), and the activation
volume, V*“'(P, T), as functions of pressure at different temperatures.
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Table 2. Self-diffusion and thermodynamic properties of sodium as functions of pressure and

temperature.
T =288 K T =36445K
D x 1010 D x 10°
(en? s71) (cn? s7Y)
P T vact K« x 107 P Ty yact Kol x 107
(kbar) (K) Expt Calc (crdmol™l) (kbarl) (kbar) (K) Expt Calc (cmmol™l) (kbar?)
0 370.95 32.3 32.3 1143 8.14 0 370.95 134 134 12.36 8.14
1.6060 385.07 15.7 15.7 10.13 6.95 1.266 382.22 8.04 819 11.23 7.18
2.894 39529 9.21 9.31 9.30 6.22 2.416 390.60 5.26 5.68 10.38 6.47
4,991 410.30 4.41 4.33 8.25 5.31 2.452 391.88 5.24 5.37 10.35 6.45
6.760 421.71 239 242 7.5 4.73 3.759 401.70 3.31 349 956 5.81
6.809 422.02 229 238 7.53 4.72 5.647 414.65 2.04 199 8.63 5.08
7.908 428.61 157 169 7.16 4.42 5.658 414.72 181 198 8.62 5.07
9.281 436.43 1.01 1.14 6.76 4.09 7560 426.56 1.15 1.18 7.87 451
8.729 433.39 0.862 0.876 7.48 4.22

Table 3. The variation of D(P, T) as a function of pressure (kbar) in Pb, Cd and Zn at one
temperature (K).
Zn Cd Pb
T =62385 T =54915 T =5260

D (x1079 cm? s » D (x108 cm? s71) R D (x107 1 cn? s71)
(kbar) Calc Expt (kbar) Calc Expt (kbar) Calc Expt

0.00 2.548 2548 0.00 3.82 3.82 0.00 241 241
0.133 2,520 2.550 0.14 3.74 — 0.987 1.63 1.30
1.380 2.293 2.286 171 2.918 3.002 1974 1106 0.981
1.860 2211 2.200 4.19 1.906 2.103 3.949 0.523 0.540
3.380 1.973 1.968 6.22 1.472 1.464

4920 1.756 1.750 8.18 1.106 1.117

6.400 1579 1.580

8.710 1.338 1.345
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